

GAS/LIQUID SAMPLING TOOL HYDRAULIC OPERATED

OPERATIONS MANUAL

VERSION	SECTION	ISSUE DATE	AUTHOR	DESCRIPTION OF UPDATE
1.0		20 April 2017	JG	First Edition

VOR-GST-MAN:VER 1.0VST-XX-LP-HYD

Vortex gas sample tool manual version 1.0

VORTEX INTERNATIONAL LTD

27 Parrs Road, RD, New Plymouth 4371, New Zealand Phone/Fax + 64 6 7538102, Mobile + 64 (0) 276 88 53 72 vortexdredge.com

Contents

1.0	INTRODUCTION	2
1.1	Reference Documents	2
1.2	Abbreviations	2
1.3	Contacts	2
2.0	SAFETY	3
2.1	Overview	3
2.2	Risk Assessment	3
2.3	Mechanical	3
3.0	TECHNICAL SPECIFICATIONS	4
3.1	Description	4
3.2	Schematic	5
3.3	Component Particulars	7
4.0	OPERATIONAL PROCEDURES	8
4.1	Pre-dive Checks	8
4.2	Operational Procedure	10
4.3	Recovery to Deck	11
4.4	Gas Sample Removal	12-13
4.5	Post Dive Checks	14-15
5.0	MAINTENANCE & STORAGE	16
5.1	Standard Procedures	16
5.2	Replacement Procedures	16
6.0	APPENDIX AND REFERENCES	17
Appe	ndix I	
6.1:1	Tool Dimensions and Weights	17
6.2	Spares Contents	18
Appe	ndix II	
Supp	liers Specifications Sheets	19-29
7.0	GAS TOOL SCHEMATICS	30
8 A	CONTACTS	3.6

Introduction

The vortex Hydraulic Mini Gas Sampling tool is designed to capture gas and liquid samples in a subsea environment and recover said samples to the surface in a low pressure state of no more than 14psi (0.96bar) by means of an hydraulic mechanical operated syringe to ingest sample then purge sample into a sample bottle after recovery to surface.

This tool is designed to be deployed from the surface with the syringe bled of air immediately upon entering the water. Sample filling relies on the suck and blow pumping motion created by the syringe and associated relief valves. Sample taken can be discharged or cycled out of the syringe whilst under water if necessary.

1.1 REFERENCE DOCUMENTS

See Appendix and references section at the end of this document for certificates and manufacturers data.

1.2 ABBREVIATIONS

PSI: Pounds per Square Inch

PPE: Personnel protective equipment

JHA: Job Hazard AnalysisVST: Vortex Sample Tool

LP: Low Pressure

1.3 CONTACTS

For technical queries, comments and feedback contact Vortex Dredge: goodinjoe@gmail.com

2.1 OVERVIEW

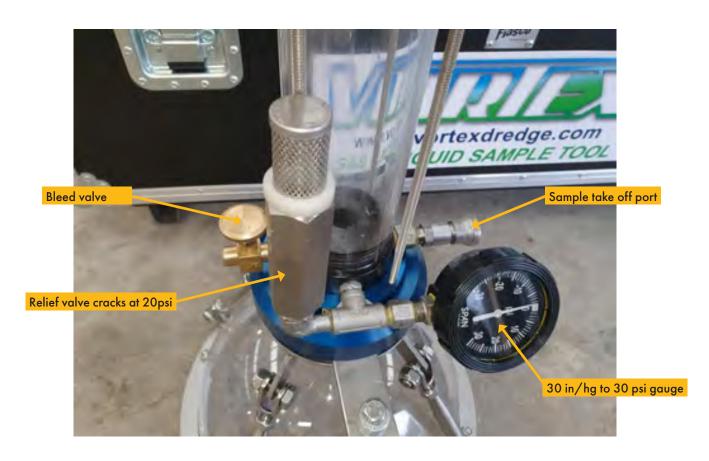
All local HSE procedures must be followed. Use of PPE should follow guidelines outlined with handling of potential sample. For example hazardous gas samples should have PPE appropriate to mitigate dangers associated with that gas. Safety glasses should be considered minimum requirement irrespective of potential sample. Your safety is your responsibility. Think and plan ahead accordingly.

2.2 RISK ASSESSMENT

Consult with local HSE and installation operators to identify best practice steps needed for safe operations. Identify if the task been done and implement lessons learned. JHA, permitting and toolbox talks should preclude all operations.

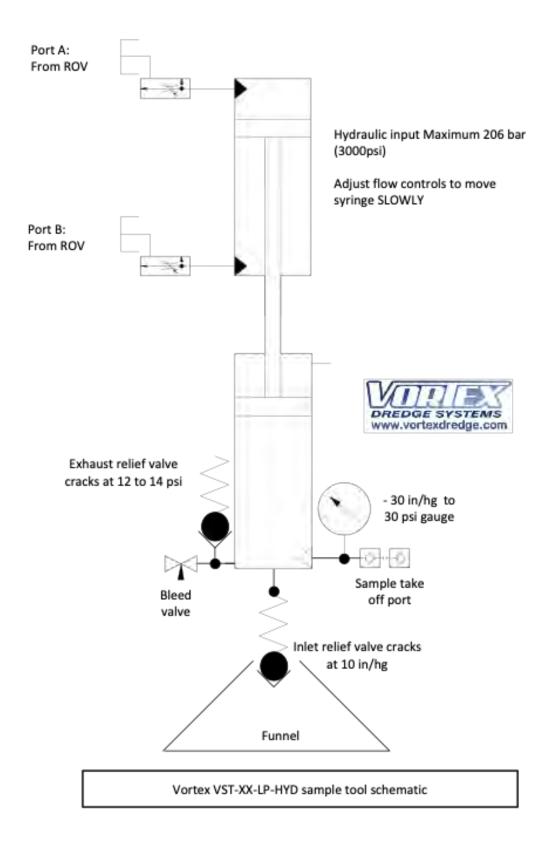
2.3 MECHANICAL

Ensure all fittings and fasteners are secure. Check general condition of tool against images in manual for anything which may indicate potential operational issues.


REMEMBER, YOUR SAFETY IS YOUR RESPONSIBILITY. THINK AND PLAN AHEAD ACCORDINGLY. IF IN DOUBT, PLEASE ASK.

3.1 DESCRIPTION

To "Suck" the sample into the syringe the operator will function the hydraulic cylinder to draw the piston away from the check valves and draw a vacuum.


To "Blow" the sample out of the tool or into the sample bottle the operator will function the hydraulic cylinder towards the check valves – pushing the sample over the check valve and to atmosphere or into the sample bottle.

Inlet valve from funnel cracks at around 10 in/hg vacuum

3.2 DESCRIPTION SCHEMATICS

3.2 HYDRAULIC CONNECTIONS

Supplied with tool are two -4 jic female swivel, 3000mm long 344bar (5000psi) rated hoses with flow control on each hose.

NOTE: Any questions on hydraulic power supply capabilities from your ROV, please consult the ROV manufacturer.

- Function A = Push or Blow product from syringe.
- Function B = Suck or ingest product into syringe.

3.3 COMPONENT PARTICULARS

- Complete tool Weight empty in air = 22lb (10kg)
- Syringe cylinder volume = 0.153 gallon (580 cc)
- Sample bottle volume = 0.264 gallon (1.0 litre)
- Main relief valve setting on syringe = 12psi (0.8 bar)
- Complete tool dimensions = 940 mm (37inch) overall height / tall x 460mm (18 inch) overall width.
- Discharging syringe into sample bottle typically captures 0.268 liter fresh water by volume with exhaust relief set at 20psi.
- Discharging syringe into sample bottle typically captures 0.523 liter of fresh air by volume with exhaust relief set at 20psi.
- Syringe body and end caps material: Acrylic
- Piston material: Acetal
- Piston rings / seals material: Nitrile 50 x 60 x 4
- Piston cap o-rings material: Nitrile N70
- Shipping box dimensions and weight = 148kg L100cm x W50cm x H 50cm.
- Depth rating = 3000 mtr. 9842 foot seawater

4.1 PRE DIVE CHECKS

STEP	PROCEDURE DESCRIPTION	CHECK
1	Check hydraulic connection between the tool and ROV. Consult ops manual for voltage figures and connections. See TECHNICAL SPECIFICATIONS in section 3. of this manual. Failure to provide correct pressures and connections as per manual can result in tool cable and motor failure.	
2	Check the piston full stroke in both directions in clear of obstructions. Connect water hose (fresh or salt) to inlet relief valve of tool, open bleed valve CW and purge water through the bleed valve and allow water to pass over the exhaust relief valve to expel any air in the system. Close bleed valve CCW. Launch with the piston at full stroke ready to ingest (piston at rest nearest the two check valves).	
3	Check the bleed valve is closed CCW. Failure to do so can result in insufficient syringe operation and sample being lost to ambient upon ascent.	
4	Check mechanical connections to the ROV are secure.	
5	Check 0 to 30 psi gauge is reading 0 and full of appropriate gauge liquid.	
6	Fit hose and funnel to inlet relief valve – adjust length of hose to suit. Secure funnel where appropriate to view sample being taken.	

4.1 PRE DIVE CHECKS (STEPS 2, 3 AND 5)

BLEED VALVE IS CLOCKWISE (CW) TO OPEN
AND COUNTERCLOCKWISE (CCW) TO CLOSE.
DO NOT OVER TIGHTEN.

4.2 OPERATION PROCEDURE

STEP	PROCEDURE DESCRIPTION	CHECK
1	Launch with the piston at full stroke ready to ingest (piston at rest nearest the two check valves)	
2	Launch ROV to just below water surface to around 20mtr depth and fully function tool to both ends of stroke in sample cylinder to bleed out any ambient surface air from the system. Stroke tool to rest at full 'blow' position so it is ready to "suck" first sample.	
3	Check the bleed valve is closed CCW. Failure to do so can result in insufficient syringe operation and sample being lost to ambient upon ascent.	
4	Check mechanical connections to the ROV are secure.	

4.3 RECOVERY TO DECK

When recovering to deck, ascend as such a rate that the 0 to 30psi pressure gauge does not show over the 20 psi setting of the relief valve.

The relief valve is likely to purge excess pressure as gas expands during ascending irrespective of the rate of ascent.

4.4 REMOVAL OF GAS SAMPLE ON SURFACE

STEP	PROCEDURE DESCRIPTION	СНЕСК
1	Recover to deck. Ascend the tool and ROV at such a rate that the 0 to 30psi pressure gauge does not show over the 20 psi setting of the relief valve. The relief valve is likely to purge excess pressure as gas expands during ascending irrespective of the rate of ascent. See 4.3 Recover to deck.	
2	Exhaust relief valve is tasked with venting any excess pressure build up in the piston due to expanding gasses on recovery to a maximum of 20 psi (0.96bar).	
3	Pull a vacuum on the sample bottle using supplied vacuum pump. Connect bottle to vacuum pump, open bottle isolation valve, pull maximum vacuum, close bottle isolation valve to seal in vacuum. See 4.4 Removal of gas sample on surface.	
4	Connect sample bottle to tool as per instructions on 4.4 Removal of gas sample on surface. NOTE: Ensure area is adequately ventilated to account for any gas going over the exhaust relief valve when filling bottle. Similarly, have appropriate containment under exhaust relief valve to catch any liquids. ALWAYS wear appropriate PPE and consult client for information on sample product and any appropriate safeguards.	
5	Flush the system with fresh water as per step below to resume sampling. Flush system with hot soapy water then fresh water between sample dives if required. Stroke piston "suck" and "Blow" 4 or 5 times to flush system. Check the piston full stroke in both directions in clear of obstructions. Connect water hose (fresh or salt) to inlet relief valve of tool, open bleed valve CW and purge water through the bleed valve and allow water to pass over the exhaust relief valve to expel any air in the system. Close bleed valve CCW. Launch with tool stroked to rest at full 'blow' position so it is ready to "suck" first sample.	

4.4 REMOVAL OF GAS SAMPLE ON SURFACE

Shown bottle and sample take off port.

Pull a vacuum on the sample bottle using supplied vacuum pump. Connect bottle to vacuum pump.

- 1. Open bottle isolation valve.
- 2. Pull maximum vacuum
- 3. Close bottle isolation valve to seal in vacuum.
- 4. Observe and note pressure gauge reading.
- 5. Connect sample bottle to sample bleed off connector
- 6. Open bottle isolation valve.
- Function tool to 'blow' and discharge sample product into sample bottle.
- 8. Close bottle isolation valve.

NOTE: Ensure area is adequately ventilated to account for any gas going over the exhaust relief valve when filling bottle.

Similarly, have appropriate containment under exhaust relief valve to catch any liquids.

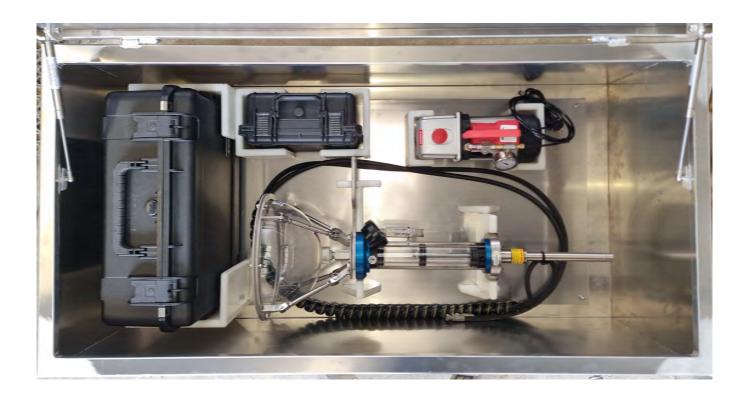
ALWAYS wear appropriate PPE and consult client for information on sample product and any appropriate safeguards.

4.5 POST - DIVE CHECKS

STEP	PROCEDURE DESCRIPTION	CHECK
1	Check the piston full stroke in both directions in clear of obstructions. Open bleed valve slightly CW to allow hot soapy water to flush through bleed valve	
2	Connect hose from container of hot soapy water to inlet relief valve of tool and purge soapy water through the bleed valve and allow water to pass over the exhaust relief valve to flush salt water and traces of sample from the system. Stroke piston "suck" and "Blow" 4 or 5 times to flush system. Complete flushing with tool stroked to rest at full 'blow' position so it is ready to "suck" first sample.	
3	Check the bleed valve is closed CCW.	
4	Check mechanical connections on the tool are secure.	

4.5 POST - DIVE CHECKS

POST DIVE COMMENTS						
Name:	Signature:	Date:				


Maintenance & Storage

5.1 STANDARD PROCEDURES

- Tool should be flushed with hot soapy water as per post dive checks.
- Allow to dry fully.
- Check operational condition of hoses.
- Visual check of tool for anything which could prohibit future operation of the tool.

5.2 REPLACEMENT PROCEDURES

• Contact Ashtead Technology representatives with reports of any damaged or unserviceable items.

Shipping box dimensions and weight = 148kg L114cm x W80cm x H 70m

APPENDIX I

6.1:1 TOOL DIMENSIONS AND WEIGHTS

Complete tool weight empty in air = 10kg (22lb) Complete tool dimensions = 940 mm (37inch) overall height / tall \times 460mm (18 inch) overall width.

SPARES

APPENDIX I

6.2 SPARES CONTENTS

- 1. Syringe ACRYLIC TUBE 70mm X 60mm x 280mm long
- 2. Item: OR053x4V75 53 x 4 Viton O-ring
- 3. Item: UM05006004 $50 \times 60 \times 4$ SA seal. Piston seals. (two items)
- 4. Cylinder seal kit.

APPENDIX II BOTTLE CERTIFICATES

Part No.: HSSC40-481. Report Date: 3/20/2013	Compressed 3537 S. N	NDUSTRIAL SERVICES US. Gas Container Specialists NC 119, P.O. Box 1000 m, NC 27253-1000	A, Inc.	Report No.: 2228 Sheet No.: 1 of 2	Part No.: HSS Report Date:	3/26/201	ARROV	Compress 3537 S	sed Gas S. NC 11		Special ox 1000		A, Inc	c.		ort No.:
CERTIF	FICATE OF COMPLIANCE &	TEST REPORT - SEAM	LESS CYLIN	DERS			RECORD OF PH	YSICAL T	ESTS (OF MATI	RIAL	FOR C	YLIN	DERS		
Location at: Spai Manufactured by: Lux Location at: 301e	ke Incorporated 5 Centatura Court, artanburg, SC 29303 xfer Riverside 16 Kansas Ave. verside, CA 92507				Manufactu For: Serial num Exceptions Size:	Hok nbers: 647	fer Riverside te Incorporated through 673 inches outside diam	eter by	9.500	inches long						
405	ke Incorporated 6 Centitura Court, intanburg, SC 29303			9)		Let No.	Yield (@ .2% offset) psi	Tensile Str	ength	Elongs 2 in (*)	hes	R	Area (%)		FL	ATTENIN TEST 6t
Quantity 27 Size	e 4.000 inches outside diameter by 9	.50 inches long.				30 30	41,009 40,655	87,836 88,074		52 51		na de la companya de	79 79	es es		PASS PASS
Specification: DOT-3A Serial Numbers: 647	A1800 (through 673	Identifying Symbol: Exceptions:	M5400			140	10.00		ancless.			-				Alle
Test Date: 3-13 Marks stamped into the shoulder		Lot Number: DOT-3A1800 (SerNo) M:	30 5400 🕭 3-13 1	000CC SS316	MATERIA		FCOPD OF CHEM 316 Stainless Steel	(altred in	12.033	S OF MA	TERIA	L FOR	CYLI	NDEF	RS	014 11 018 11 11 118
Other Marks: HOKE					CAST	TYPE of ANALYSIS	SERIAL No. RANGE	С	Mn	Si P	s	Cr	Ni	Mo	Cu	Fe
minutes @ 775° F. The material u	a process of spinning both ends to form a used was 316 stainless steel seamless to s to chemical analysis and record thereoi gg were inspected and each cylinder was	ubing and identified by the following is attached hereto. The heat number	heat number: V0	1054. the material. All material,	V01054	mill	647 through 673	0.02	1.91	0.28 0.0	2 0.013	16.79	11.3	2.03	0.21	BAL
ree from seams, cracks, lamination	ons, and other defects which and after n heat treatment of containers was supervi	night prove injurious to the strength o	f the cylinder. sfactory. The cylin tion to be 4.000 in	nder walls were measured	The above a		Titan Metal Fat een verified to comply ade by: Stork Material	with materia	al authori	zed by the	specifica		CA 926	49. US	tend Bern	one Link II
and the minimum thickness noted	er square inch under an internal test pres	sure of 3,000 pounds per square inch														
and the minimum thickness noted calculated to be 32,003 pounds pe Hydrostatic tests, flattening tests,		as prescribed in DOT Specification	3A were made in t													

APPENDIX II

ACRYLIC TUBE PRESSURE CALCULATIONS

Diametro esterno mm.	Diametro interno mm.	Spessore di parete mm
50	40-42-44	5-4-3
60	50-52-54	5-4-3
64	54-56-58	5-4-3
70	60-62-64	5-4-3
76	66-68-70	5-4-3
80	70-72-74	5-4-3
90	80-82-84	5-4-3
100	90-92-94	5-4-3
110	100-102-104	5-4-3
120	110-112-114	5-4-3
125	115-117-119	5-4-3
134	124-126-128	5-4-3
139	129-131-133	5-4-3
150	140-142-144	5-4-3
160	150-152-154	5-4-3
185	175-177-179	5-4-3
200	190-192-194	5-4-3
220	210-212-214	5-4-3
240	230-232-234	5-4-3
250	240-242-244	5-4-3
300	284-288-290-292	8-6-5-4
350	334-338-340-342	8-6-5-4
400	384-388-390-392	8-6-5-4
457	437-441-445-447	10-8-6-5
500	480-484-488-490	10-8-6-5

External Internal Wall								
diámeter mm.	diameter mm.	thickness mm						
50	40-42-44	5-4-3						
60	50-52-54	5-4-3						
64	54-56-58	5-4-3						
70	60-62-64	5-4-3						
76	66-68-70	5-4-3						
80	70-72-74	5-4-3						
90	80-82-84	5-4-3						
100	90-92-94	5-4-3						
110	100-102-104	5-4-3						
120	110-112-114	5-4-3						
125	115-117-119	5-4-3						
134	124-126-128	5-4-3						
139	129-131-133	5-4-3						
150	140-142-144	5-4-3						
160	150-152-154	5-4-3						
185	175-177-179	5-4-3						
200	190-192-194	5-4-3						
220	210-212-214	5-4-3						
240	230-232-234	5-4-3						
250	240-242-244	5-4-3						
300	284-288-290-292	8-6-5-4						
350	334-338-340-342	8-6-5-4						
400	384-388-390-392	8-6-5-4						
457	437-441-445-447	10-8-6-5						
500	480-484-488-490	10-8-6-5						

APPENDIX II

ACRYLIC TUBE PRESSURE CALCULATIONS CONTINUED

Lunghezze standare	d t	
fino al ø esterno 250	mm.	2.000 mm
Ø est. 300 mm.	1.000	/2.030/3.030 mm.
Ø est. 400 mm.	1.000/2.030	V2.160/3.030 mm
Ø est. 500 mm.	1.000/2.030	V2.180/3.030 mm
A richiesta per Ø 200 la lunghezza 3.030 m)-220-240-250 è nm.	disponibile
Tolleranze sui diame	etri esterni	
dal Ø 50 mm. al Ø 10	00 mm.	+1 / -1,5%
dal Ø 110 mm. al Ø 5	500 mm.	+1 / -1,5%
Tolleranze sullo spe	ecore di pareta	

spessore 3 mm. +/- 20 % spessore 4 mm. +/- 15 %

dallo spessore 5 mm. allo spessore 15 mm. +/- 10 %

Tolleranze sulle lunghezze

+/- 1 mm.

Formula per il calcolo della pressione massima interna ammissibile

dove:

Pⁿ = pressione Interna del tubo-

In atmosfere o ber (1ber=0,1 N/mm²) S = spessore del tubo in mm.

D' = ctametro interno del tubo in mm.

Questa formula è valida in concizioni di test standard, e cioè ad una tamperatura ambiente di 20 °C ed umidità relativa del 50%.

250		2.000 mm.
	0/2.030/	3.030 mm.
	0/2.160/	3.030 mm.
	0/2.180/	3.030 mm.
0-2	is availa	ible
xte	er	
0 10		+1/-1,5%
Ø 5		+1/-1,5%
hic		
		+/- 20 %
		+/- 15 %
up t	15 mm.	4/- 10 %

Formula for the calculation of the maximum internal allowable pressure

where:

P* = Internal pressure of the tube in atmospheres

or bar (1bar=0,1 N/mm²)

S = thickness of the tube in mm.

D' = internal diameter of the tube in mm.

This formula is valid for standard test conditions, and it means with 20 °C room temperature and 50% of relative humidity.

APPENDIX II

ACRYLIC TUBE PRESSURE CALCULATIONS CONTINUED

Condizioni tecniche di fornitura	
Lunghezze standard	
fino al Ø esterno 40 mm.	2.000 mm
oltre	2.050 mm.
Tolleranze sul diametri esterni	
dal Ø 7 mm. al Ø 150 mm.	+/- 1 %
dal Ø 160 mm. al Ø 300 mm.	+/- 2 %
Tolleranze sui diametri interni	
dal Ø 7 mm. al Ø 150 mm.	+/- 1,5 %
dal Ø 160 mm, al Ø 300 mm.	+/- 2,5 %
Tolleranze sullo spessore di parete	
dal Ø 7 mm. al Ø 64 mm.	+/- 5 %
dal Ø 70 mm. al Ø 100 mm.	+/- 8 %
dal Ø 110 mm. al Ø 200 mm.	+/- 10 %
dal Ø 220 mm, al Ø 300 mm.	+/- 15 %

Tolleranze sulle lunghezze

+/- 1 mm.

Formula per il calcolo della pressione massima interna ammissibile

$$P' = \frac{50 \times S}{D^s}$$
 valida per $\frac{D^o}{D^s} \le 1.2$

dove:

P1 = pressione interna del tubo

in atmosfere o bar (1bar=0,1 N/mm/) S = spsssore del tubo in mm.

D° = diametro esterno del tubo in mm.

D' = diametro interno del tubo in mm.

Questa formula è valida in condizioni di test standard, e cioè ad una temperatura ambiente di 20 °C

ed umidità relativa del 50%.

Technical delivery terms	10000
Standard lengths	
up to the external Ø 40 mm.	2.000 mm.
over 40 mm.	2.050 mm.
Tolerances on the external diameter	
from Ø 7 mm. up to Ø 150 mm.	+/- 1 %
from Ø 160 mm. up to Ø 300 mm.	+/- 2 %
Tolerances on the internal diameter	
from Ø 7 mm. up to Ø 150 mm.	+/- 1,5 %
from @ 160 mm. up to @ 300 mm.	+/- 2,5 %
Tolerances on wall thickness	
from Ø 7 mm. up to Ø 64 mm.	+/- 5 %
from Ø 70 mm. up to Ø100 mm.	+/- 8 %
from Ø 110 mm. up to Ø 200 mm.	+/- 10 %
from Ø 220 mm. up to Ø 300 mm.	4/- 15 %

Lengths tolerance

+/- 1 mm.

Formula for the calculation of the maximum internal aliowable pressure

$$P' = \frac{-50 \times S}{D^1}$$
 valida per $\frac{D^0}{D^1} \le 1.2$

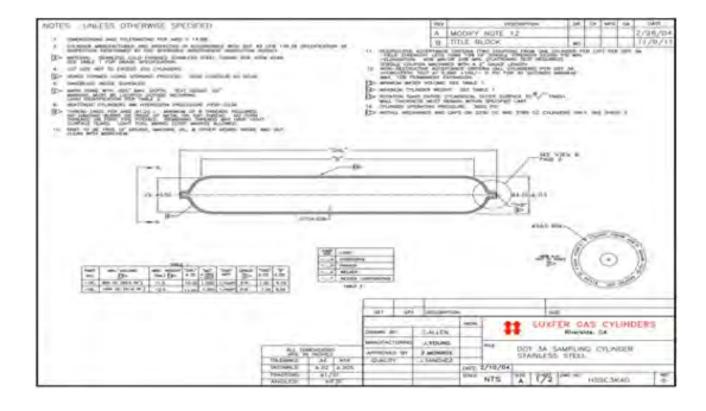
where:

P' = internal pressure of the tube in atmospheres

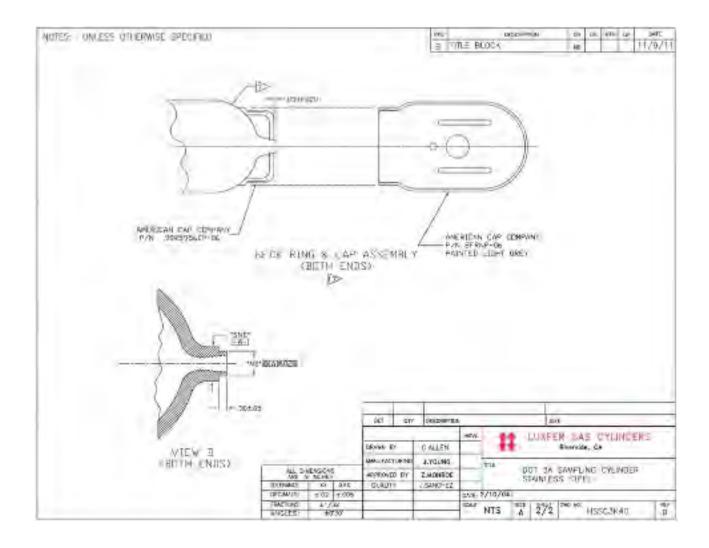
or bar (1bar=0,1 N/mm²)

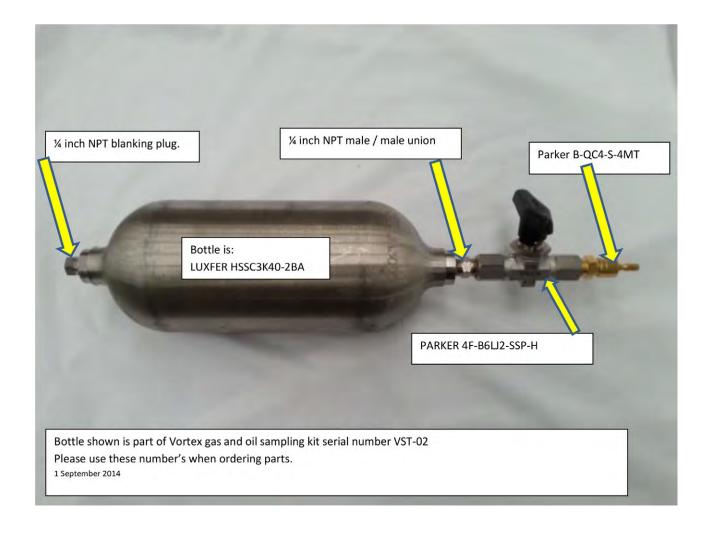
S = thickness of the tube in mm.

D° = external diameter of the tube in mm.


 D^{r} = internal diameter of the tube in mm.

This formula is valid for standard test conditions, and it means with 20 °C room temperature and 50%


of relative humidity.


APPENDIX II

APPENDIX II

APPENDIX II

APPENDIX II

SAMPLE BOTTLE DETAILS

Specification	DOT-3A1800 (NACE MR0175)			
Volume	000cc (0.264 gallon)			
Test date	March 2013			
Material	SS 316 L			
Surface coating	N/A. Bare 316 stainless steel			
Test pressure	Design test pressure of 3000 psi			
Working pressure	Marked service pressure 1800 psi			

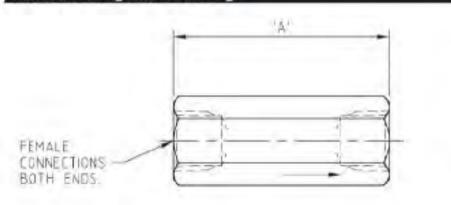
It is YOUR responsibility to ensure transportation of equipment containing product and or samples complies with all relevant authorities.

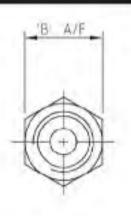
APPENDIX II

PART NUMBER	SERVICE PRESSURE	DIAMETER	LENGTH	WEIGHT	INTERNAL VOLUME	THREADS	SPECIFICATION	INCLUDED ACCESSORIES	MATERIAL
	bar	mm	mm	kg	ml				
HSSC3K1 5-3BA	207	38	221	0.6	150	.250-18 NPT	DOT-3A	-	316L Stainless
HSSC3K1 5-4BA	207	38	221	0.6	150	.375-18 NPT	DOT-3A	-	316L Stainless
HSSC30- 1BA	207	76	173	2.3	300	.500-14 NPT	DOT-3A	-	316L Stainless
HSSC30- 2BA	207	76	239	3.0	500	.500-14 NPT	DOT-3A	-	316L Stainless
HSSC30- 3BA	207	76	417	5.6	1000	.750-14 NPT	DOT-3A		316L Stainless
HSSC3K4 0-1BA	207	102	260	5.2	900	.250-18 NPT	DOT-3A	Threaded cap & collar	316L Stainless
HSSC3K4 0-2BA	207	102	279	5.7	1000	.250-18 NPT	DOT-3A	Threaded cap & collar	316L Stainless

APPENDIX II
CHECK VALVE DETAILS

Product Data Sheet

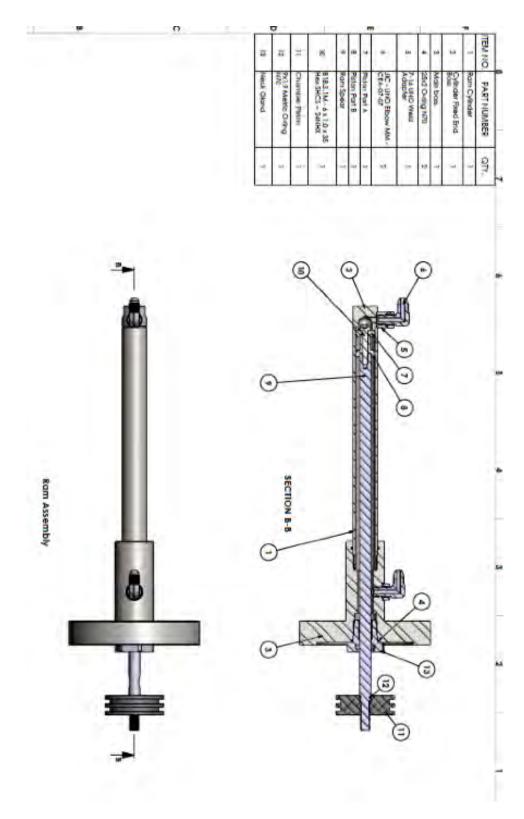

Check Valve

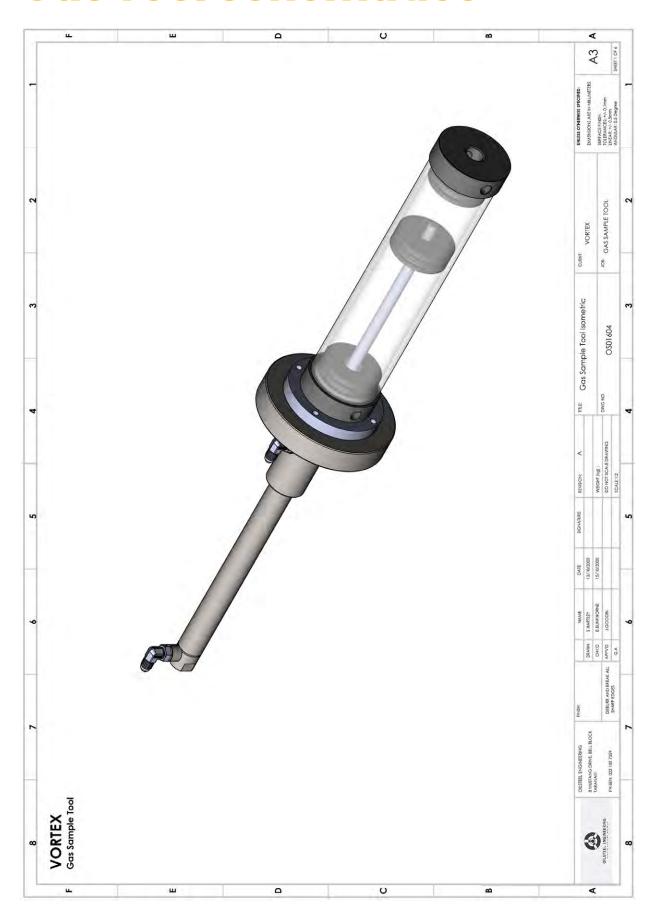


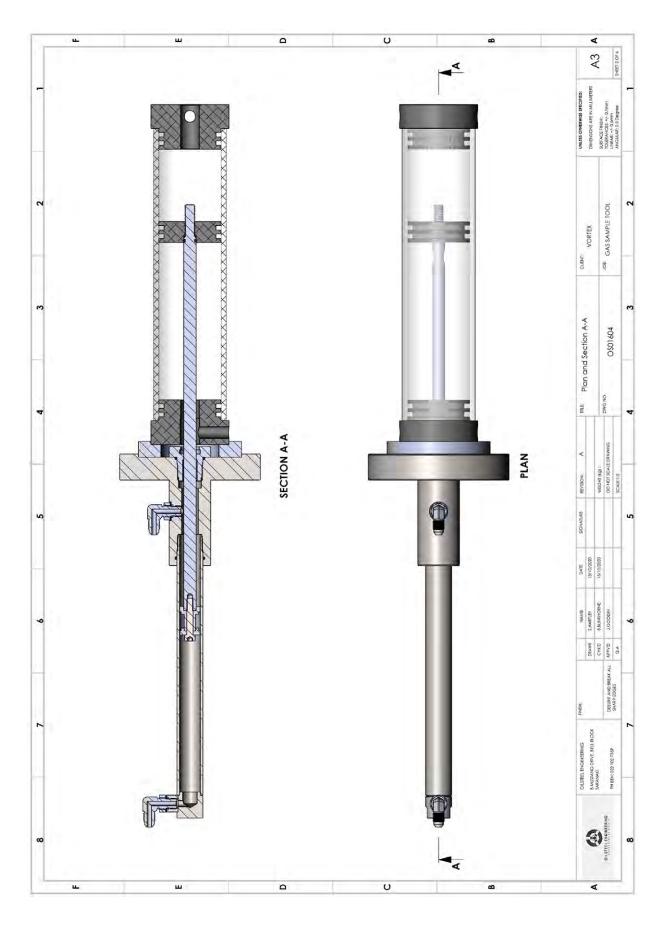
Key features

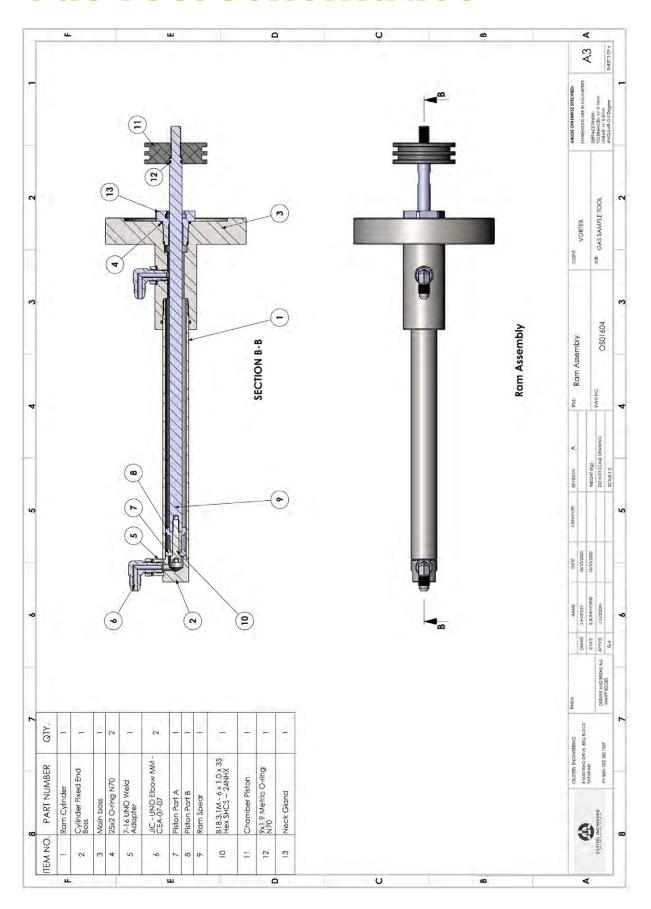
- In-line poppet type
- Allows flow in one direction only, closing when flow reverses
- Max temperature 200°C
- VITON seats (VITON 90 available for NACE, KALREZ also available if required
- NPT female X female connections

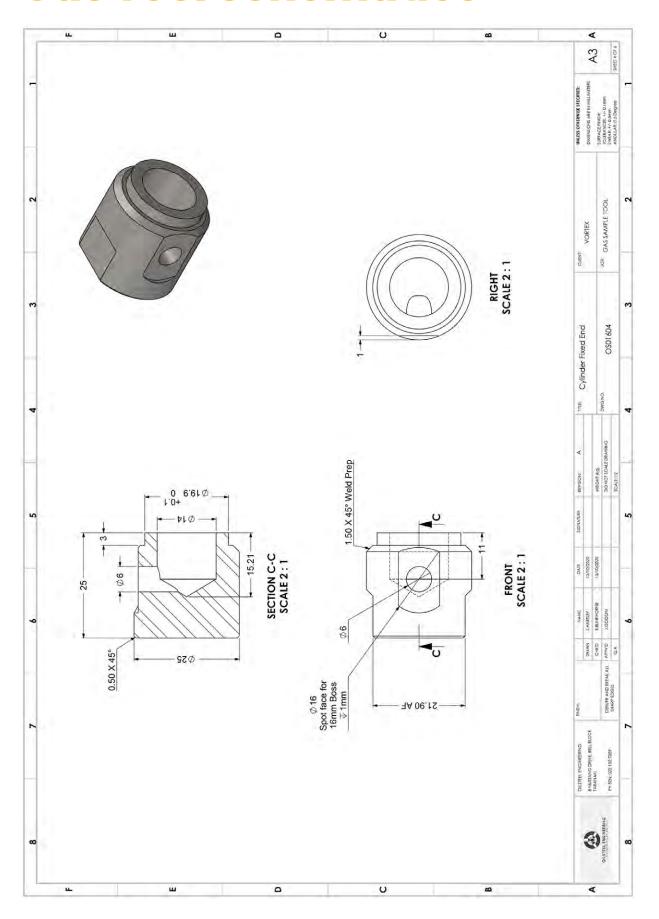
General Arrangement Drawing

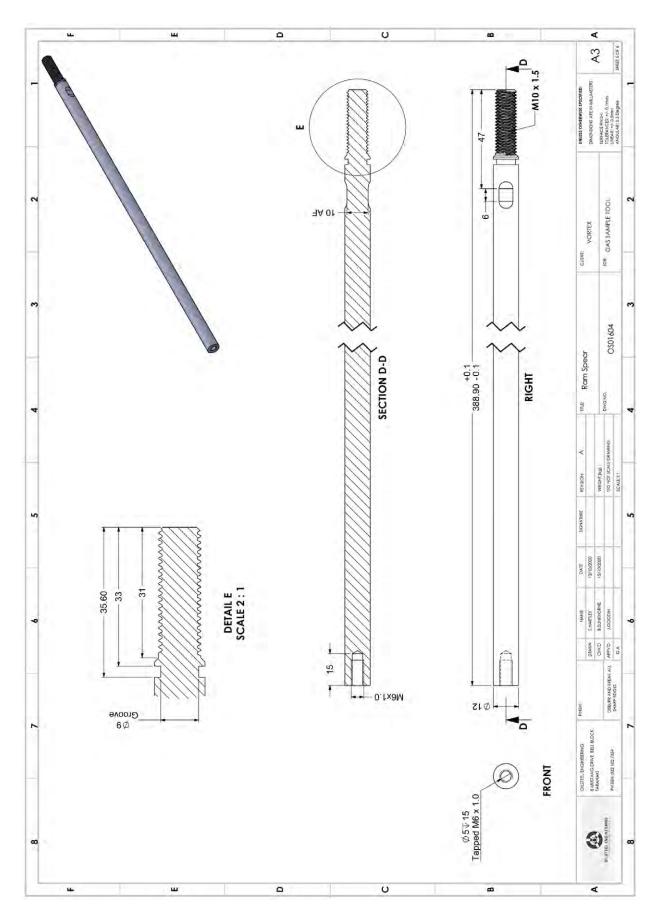


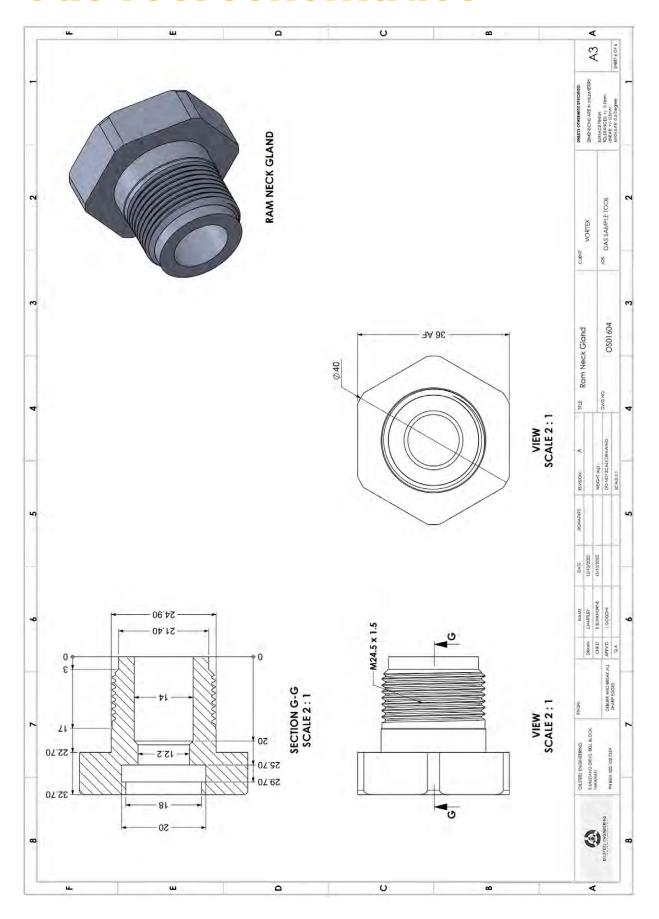



Sizes	Part No	Max Pressure	Cracking Pressure	Α	В	Weight	CV (Max)
1/4"	CV25S	6,000 PSI	7 PSI	0.87*	2.31"	0.2kg	0.7
3/6"	CV38S	6,000 PSI	7 PSI	1.10"	2.50"	0.3kg	0.7
1/2"	CV50S	6,000 PSI	7 PSI	1.10"	3.06"	0.3kg	2.0
3/4"	CV75S	6,000 PSI	4 PSI	1.63"	3.63"	0.8kg	4.6
1"	CV10S	6,000 PSI	4 PSI	2.05"	4.19"	0.9kg	7.2


APPENDIX II


HYDRAULIC CYLINDER





Contacts

JOE GOODIN

MANAGING DIRECTOR

VORTEX International Ltd

27 Parrs Road, RD1, New Plymouth, New Zealand

Tel/Fax: +64 (6) 753 8102, Mobile: +64 (0) 27 688 5372

Email: joe@vortexdredge.com Website: vortexdredge.com

IN ASSOCIATION WITH ASHTEAD TECHNOLOGY:

ABERDEEN

Ashtead Technology Ltd Ashtead House, Discovery Drive, ArnhallBusiness Park, Westhill, Aberdeenshire AB32 6FG

Tel: +44 (0) 1224 771888,

Email: aberdeen@ashtead-technology.com

SINGAPORE

Ashtead Technology (S.E.A) Pte Ltd Loyang Offshore Supply Base, 25 Loyang Crescent, Block 302, Unit 02-12 TOPS Ave 3, PO Box 5157, SINGAPORE 508988

Tel: +65 6545 9350,

Email: singapore@ashtead-technology.com

HOUSTON

Ashtead Technology Offshore Inc 19407 Park Row, Suite 170, Houston, TX 77084, U.S.A Tel: +1 281 398 9533,

Email: houston@ashtead-technology.com

SCOPE ENGINEERING

(Ashtead Technology Agent)
Scope Engineering (WA) Pty Ltd
35 Stuart Drive, Henderson, Western Australia 6166
T: +61 8 6498 9642 F: +61 8 6498 9584.

Email: Perth@ashtead-technology.com

INNOVA AS

P.O. Box 390 Forus, 4067 Stavanger


Phone: +47 51 96 17 00 Fax: +47 51 96 17 01 Email: post@innova.no

TES SURVEY EQUIPMENT SERVICES LLC

PO Box 128256 Abu Dhabi, UAE

Tel: + 971 2 650 7710 Fax: +971 2 650 7200 Email: info@tesme.com

